THE SYNTHESIS OF LEUKOTRIENE ANALOGUES VIA ACETYLENE CARBOCUPRATION

Mark Furber,^a Richard J. K. Taylor^{a*} and S. Cliff Burford^b a. School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ b. Fisons Pharmaceutical Division, Loughborough LE11 0RH

<u>SUMMARY</u>: A general route to simple LTB_4 analogues is reported based on acetylene carbocupration followed by trapping with methyl 5-oxopentanoate.

There has been a considerable amount of recent interest in hydroxylated eicosatetraenoic acids derived from arachidonic acid by lipoxygenase metabolic pathways.¹ Leukotriene B₄ (LTB₄, <u>1</u>), produced by the 5-lipoxygenase pathway, has attracted particular attention because of its potent chemotactic properties and its potential role in inflammation and allergy.² We wanted to prepare a series of LTB₄ analogues for structure-activity studies and the first synthetic targets were analogues of general structure <u>2</u> which contain the crucial <u>Z</u>-allylic alcohol and terminal carboxylic acid moieties. In designing a synthetic approach to compounds <u>2</u> a short, stereospecific route was required which was compatible with wide variation in the C₁₃-chain. Acetylene carbocupration followed by trapping with methyl 5-oxopentanoate (<u>3</u>) seemed to meet these demands in terms of the established <u>Z</u>-stereoselectivity of carbocupration and its scope with respect to the organometallic component:³

2731

However, there had been only two reports of aldehydes being used as trapping agents in carbocupration reactions^{4,5} and so model studies were carried out to assess the viability of such an approach. A wide range of butylcopper and butylcuprate reagents were therefore treated with acetylene to product \underline{Z} -hex-1-enyl organometallics which were trapped with pentanal to produce \underline{Z} -undec-5-en-6-ol $(\underline{4})^{6,7}$ in varying amounts (Table). The results in the Table show that the reagents of choice for the carbocupration-aldehyde trapping procedure are the homocuprates (entry ii) and the lithium alkyl(pentynyl)cuprate $\underline{5a}$ (entry iv).

		"BuCu" 1. HC≡CH, 2. BuCHO,	-50°C -70°C Bu	→Bu OH 4	
	<u>Reagent</u> ^a	Ligands, salts	Equivalents of BUCHO	G.L.C. Yield (%)	Isolated Yield (%)
1.	BuCu	LiBr.Me ₂ S	1		
	BuCu	LiBr.Me ₂ S.BF ₃	1	0-5	-
	BuCu ^C	MgBr ₂ .Me ₂ S	1		
ii	Bu ₂ CuLi ^d	LiBr.Me ₂ S	2	36	35
	Bu ₂ CuLi	LiBr.Me ₂ S	1	-	74
	Bu ₂ CuLi	LiBr.Me2S.BF3	2	41	37
iii	BuCu (CN) Li	-	1		
	BuCu (SPh) Li	-	1	0-5	-
	$\operatorname{Bu}_2\operatorname{Cu}(\operatorname{CN})\operatorname{Li}_2$	-	2		
iv	BuCuMeLi	3LiBr.Me ₂ S	1	27	-
	BuCu≡CPrLi	2 (Me ₂ N) 3P	1	-	86
	5 <u>a</u>	2 5			

<u>a</u>	Prepared	in	diethyl	ether	un	nless	s i	Indicate	ed	otherwis	se. <u>b</u>	Base	d on	BuCHO.
c	Prepared	in	THF. d	Use c	fī	CHF i	n	place o	of	diethyl	ether	gave	16%	yield.

TABLE

Having established that the basic strategy was sound we turned our attention to the use of aldehyde ester $\underline{3}$ as a trapping agent, first with the hexenylcuprate $\underline{6a}$ (Scheme 1). Three major products were isolated from this reaction, the expected hydroxy-ester $\underline{7a}$ (30%) and lactone $\underline{9a}$ (5%) together with the dienyl-acid $\underline{10}$ (38%). Compound $\underline{10}$ is presumably formed from lactone $\underline{9a}$ and cuprate $\underline{6a}$ by an allylic substitution reaction. Similar reactions have been reported with δ -vinyl- δ -valerolactone.⁸ In accord with this proposal, treatment of lactone $\underline{9a}$, after isolation, with cuprate $\underline{6a}$ produced $\underline{10}$ in 79% yield. Fortunately, we found that this unwanted side reaction could be completely suppressed by the addition of boron trifluoride etherate to the hexenyl cuprate $\underline{6a}$ prior to the addition of aldehyde $\underline{3}$. Under these conditions ester $\underline{7a}$ was obtained in 55% yield. Ester $\underline{7a}$ was readily saponified to hydroxy acid $\underline{8a}$ (90%) which was converted to lactone $\underline{9a}$ (ca. 100%) by heating <u>in vacuo</u>.

The above protocol was then applied to the synthesis of LTB_4 analogues $\frac{2}{4}$ (Scheme 1 & 2). Firstly, the hexahydro-LTB₄ analogue $\frac{8}{4}$ was prepared starting from lithium di(tridecyl)cuprate $\frac{5}{2}$. An unusually high temperature, -20°C, was required for acetylene incororation but once formed the alkenylcuprate $\frac{6}{2}$ gave the expected hydroxy ester $\frac{7}{2}$ (48%) on treatment with boron trifluoride etherate followed by aldehyde $\frac{3}{4}$. Saponification of $\frac{7}{2}$ produced the target LTB₄ analogue $\frac{8}{2}$ (90%) which readily lactonised on heating to give $\frac{10}{2}$ in quantitative yield.

A similar procedure was employed for the preparation of the tetrahydro-LTB₄ analogue <u>14</u> (Scheme 2). The dienylcuprate <u>12</u> was prepared from cuprate <u>11</u> by a double carbocupration reaction⁹ and then treated with aldehyde <u>3</u> in the normal manner to give hydroxy ester <u>13</u> in 48% yield. Saponification gave LTB₄ analogue <u>14</u> which was characterised as lactone <u>15</u> (41% from <u>3</u>). A wide variety of LTB₄ analogues of type <u>2</u> are now accessible via this carbocuprate-aldehyde trapping procedure. The biological properties of compounds <u>8</u>, <u>9</u>, <u>10</u>, <u>14</u> and <u>15</u> are currently being evaluated.

10 (E:Z = 4:1)

REFERENCES

- 1) B. J. Fitzsimmons and J. Rokach, <u>Tetrahedron Lett.</u>, 1984, <u>25</u>, 3043 and references therein.
- K. C. Nicolaou, R. E. Zipkin, R. E. Dolle and B. D. Harris, <u>J. Amer. Chem</u>. Soc., 1984, 106, 3548 and references therein.
- 3) Review: J. F. Normant and A. Alexakis, Synthesis, 1981, 841.
- J. F. Normant, A. Alexakis and G. Cahiez, <u>J. Organomet. Chem</u>., 1979, <u>177</u>, 293.
- 5) J. F. Normant, A. Alexakis and G. Cahiez, <u>Tetrahedron</u>, 1980, <u>36</u>, 1961.
- 6) All new compounds gave consistent IR, ¹³C and ¹H NMR spectra together with satisfactory elemental analyses or accurate mass measurements. All compounds are racemic.
- 7) An authentic sample of compound <u>4</u> was prepared from <u>Z</u>-iodohex-1-ene in 76% yield by lithiation followed by treatment with pentanal (see J. F. Normant, G. Cahiez, C. Chuit and J. Villieras, <u>J. Organomet. Chem.</u>, 1974, <u>77</u>, 269 and G. Cahiez, D. Bernard and J. F. Normant, <u>Synthesis</u>, 1976, 245). For comparison, <u>E-undec-5-en-6-ol</u> was prepared from hex-1-yne by sequential treatment with diisobutylaluminium hydride, butyllithium and pentanal (see G. Zweifel and R. B. Steele, <u>J. Amer. Chem. Soc</u>., 1976, <u>89</u>, 2754). Samples of <u>4</u> did not contain any of the <u>E-isomer according to ¹³C & ¹H</u> N.m.r.
- T. Fujisawa, T. Sato, M. Kawashima, K. Naruse and K. Tamai, <u>Tetrahedron</u> Lett., 1982, 23, 3583.
- A. Alexakis and J. F. Normant, <u>Tetrahedron Lett.</u>, 1982, <u>23</u>, 5151;
 M. Furber, R. J. K. Taylor and S. C. Burford, unpublished results.

ACKNOWLEDGEMENTS

We are grateful to the S. E. R. C. and Fisons Pharmaceutical Division for a C. A: S. E. award to Mark Furber.

(Received in USA 25 March 1985)